Ir al contenido principal

Operaciones entre números complejos

 En esta página vamos a explicar cómo sumar, restar, multiplicar y dividir números complejos.

Índice de contenidos:

  1. Sumar y restar en forma binómica
  2. Multiplicar y dividir en forma binómica
  3. Multiplicar y dividir en forma polar

Otros temas de números complejos:

1. Sumar y restar en forma binómica

Sean  y  dos complejos dados en su forma binómica:

Explicamos y damos las fórmulas para sumar, restar, multiplicar y dividir números complejos o imaginarios en su forma binómica y en su forma polar. Incluye ejemplos y enlaces de interés. Matemáticas. Números complejos. Secundaria. Bachillerato. Universidad.

La suma de los complejos  y  es un número complejo cuya parte real es la suma de las partes reales y cuya parte imaginaria es la suma de las partes imaginarias:

Explicamos y damos las fórmulas para sumar, restar, multiplicar y dividir números complejos o imaginarios en su forma binómica y en su forma polar. Incluye ejemplos y enlaces de interés. Matemáticas. Números complejos. Secundaria. Bachillerato. Universidad.

La resta es análoga, pero restando:

Explicamos y damos las fórmulas para sumar, restar, multiplicar y dividir números complejos o imaginarios en su forma binómica y en su forma polar. Incluye ejemplos y enlaces de interés. Matemáticas. Números complejos. Secundaria. Bachillerato. Universidad.



Problema 1

Sumar y restar los siguientes números complejos:


Calculamos la suma +:




Calculamos la resta :




Comentarios

Entradas populares de este blog

¿Cuáles son las Leyes de Newton?

¿Cuáles son las Leyes de Newton Las  leyes de Newton son tres principios que sirven para describir el movimiento de los cuerpos,  basados en un sistema de referencias inerciales (fuerzas reales con velocidad constante). Las tres leyes de Newton son: Primera ley o ley de la inercia. Segunda ley o ley fundamental de la dinámica. Tercera ley o principio de acción y reacción. Estas leyes que relacionan la fuerza, la velocidad y el movimiento de los cuerpos son la base de la mecánica clásica y la física. Fueron postuladas por el físico y matemático inglés Isaac Newton, en 1687. Primera ley de Newton: ley de la inercia La ley de la inercia o primera ley postula que un cuerpo permanecerá en reposo o en movimiento recto con una velocidad constante, a menos que se aplique una fuerza externa. Dicho de otro modo, no es posible que un cuerpo cambie su estado inicial (sea de reposo o movimiento) a menos que intervengan una o varias fuerzas. La fórmula de la primera ley de Newton es : Si la suma de
 ¿QUE ES UN RODAMIENTO? Un rodamiento (también denominado cojinete con rodillos), 1 ​ es un tipo de  cojinete  que transmite a un bastidor las cargas procedentes del eje rotatorio que soporta, utilizando elementos rodantes (como bolas o rodillos) confinados entre dos anillos provistos de  surcos  de rodadura para permitir su giro. El movimiento relativo de los surcos hace que los elementos rodantes presenten una reducida  resistencia a la rodadura  y un  deslizamiento  muy pequeño. Los rodamientos presentan la ventaja de ser una buena solución de compromiso entre factores como costo, tamaño, peso, capacidad de carga, durabilidad, precisión o la fricción resultante. Distintos diseños pueden ser mejores para un cometido específico, pero peores en la mayoría de los casos restantes, aunque los  cojinetes de fluidos  a veces pueden combinar simultáneamente capacidad de carga, durabilidad, precisión, fricción reducida, velocidad de rotación elevada, y en algunas ocasiones, un costo acept

Factorización de un número

  Factorización de un número Para  factorizar  un  número  o  descomponerlo en factores  efectuamos sucesivas divisiones entre sus divisores primos hasta  obtener  un uno como cociente. Para realizar las divisiones utilizaremos una  barra vertical , a la  derecha escribimos los divisores primos  y a la  izquierda los cocientes . 432 = 2 4  · 3 3 Sacar factor común Sacar factor común a un polinomio consiste en aplicar la propiedad distributiva. a · x + b · x + c · x = x (a + b + c) Una raíz del polinomio será siempre x = 0 x3 + x2 = x2 (x + 1) La raíces son: x = 0 y x = − 1 Doble extracción de factor comúun x 2  − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b) Diferencia de cuadrados Una diferencia de cuadrados es igual a suma por diferencia. a 2  − b 2  = (a + b) · (a − b) x 2  − 4 = (X + 2) · (X − 2) Las raíces son X = − 2 y X = 2 Trinomio cuadrado perfecto Un  trinomio cuadrado perfecto  es el desarrollo de un un  binomio al cuadrado . a 2  + 2 a b + b 2  = (a + b) 2 a 2  −