Diagramas de desplazamiento.
Por lo general, un sistema de leva es un dispositivo con un grado de libertad (1 GDL). Es impulsado por un movimiento de entrada conocido θ( )t , casi siempre un eje que gira a velocidad constante, obteniéndose un movimiento de salida predeterminado ( y ) para el seguidor. Es importante observar que y es una distancia de traslación para un seguidor de movimiento alternativo; pero en un ángulo para un seguidor oscilante. Durante la rotación de la leva a lo largo de un ciclo del movimiento de entrada, el seguidor ejecuta una serie de eventos como los que se muestran gráficamente en el “diagrama de desplazamientos” de la figura siguiente: MECANISMOS M.C. IGNACIO ARRIOJA CÁRDENAS Página 3 La abscisa representa un ciclo del movimiento de entrada θ (una revolución de la leva) y se dibuja a cualquier escala conveniente. La ordenada representa el recorrido y del seguidor y, en el caso de un seguidor de movimiento alternativo, se dibuja casi siempre a una escala completa para ayudar al trazado de la leva. En el diagrama de desplazamientos se identifican porciones tales como: • Subida.- En este tramo el movimiento del seguidor es hacia fuera del centro de la leva. • Elevación.- Es el máximo valor de la subida. • Detenciones.- Son los períodos durante los cuales el seguidor se encuentra en reposo. • Retorno.- Es el período en que el desplazamiento del seguidor es hacia el centro de la leva. Uno de los pasos claves en el diseño de una leva es la correcta selección de las formas apropiadas de los movimientos de subida y de retorno, la elevación total y la duración de las detenciones. Estas características generalmente dependen de las necesidades de la aplicación. Una vez que se han elegido las formas apropiadas para estos movimientos, queda establecida la relación exacta entre la entrada θ( )t y la salida y , y se construye con precisión el diagrama de desplazamientos, el cual es una representación gráfica de la relación funcional y y = ( ) θ . Esta relación contiene en su expresión misma la naturaleza exacta del perfil de la leva final, la información necesaria para su trazado y fabricación, y también las características importantes que determinan la calidad de su comportamiento dinámico. 3.2 DISEÑO GRÁFICO Y ANALÍTICO DEL PERFIL DE LEVAS PLANAS. El diseño gráfico del perfil de una leva, consiste en trazar el perfil apropiado de la leva para lograr el movimiento del seguidor representado en el diagrama de desplazamientos dado. A continuación se representa una leva de placa con seguidor radial de rodillo, en la cual se observa una nomenclatura adicional. De acuerdo con la leva representada en la figura, podemos identificar algunos términos básicos, tales como: Punto de trazo.- Es un punto teórico del seguidor, el cual se elige en el centro de un seguidor de rodillo o sobre la superficie de un seguidor de cara plana. Curva de paso.- Es el lugar geométrico generado por el punto de trazo, conforme el seguidor se mueve en relación con la leva. Para un seguidor de cuña, la curva de paso y la superficie de la leva son idénticas. En el caso de un seguidor de rodillo, está, separadas por el radio del rodillo. Círculo primario R0.- Es el más pequeño que se puede trazar con centro en el eje de rotación de la leva y tangente a la curva de paso. MECANISMOS M.C. IGNACIO ARRIOJA CÁRDENAS Página 4 Circulo de base.- Es el círculo más pequeño con centro sobre el eje de rotación de la leva y tangente a la superficie de ésta. En el caso de un seguidor de rodillo, es el más pequeño que el círculo primario, siendo la diferencia el radio del rodillo y, en el caso de un seguidor de cara plana, es idéntico al círculo primario. Al construir un perfil de leva se aplica el principio de inversión cinemática, imaginando que la leva es estacionaria y haciendo que el seguidor gire en sentido opuesto a la dirección de rotación de la leva, tal y como se indica en la figura anterior. Posteriormente se deben llevar a cabo los pasos siguientes: 1. Se traza el círculo primario de radio Ro , y dividirlo en cierto número de segmentos. 2. Se asignan números de estación a los límites de dichos segmentos. 3. Se divide la abscisa del diagrama de desplazamientos en segmentos correspondientes, transfiriendo las distancias, por medio de divisores, del diagrama de desplazamientos directamente sobre el trazado de la leva, a fin de localizar las posiciones correspondientes al punto de trazo. 4. Una curva suave que pase por estos puntos es la curva de paso. En el caso de un seguidor de rodillo, simplemente se dibuja el rodillo en su posición apropiada en cada estación y luego se construye el perfil de la leva como una curva suave tangente a todas las posiciones del rodillo. El procedimiento anterior se refuerza con la siguiente figura: Leva de disco con seguidor radial de rodillo. En la siguiente figura se muestra cómo se debe modificar el método de construcción para una leva de placa con seguidor excéntrico de rodillo. Se siguen los siguientes pasos: 1. Se construye un círculo de excentricidad, usando un radio igual a la magnitud de la excentricidad. 2. Identificar los números de estación en torno al circulo primario y se construye la línea central del seguidor para cada estación, haciéndola tangente al circulo de excentricidad. 3. Se establecen los centros del rodillo para cada estación, transfiriendo las distancias del diagrama de desplazamientos directamente a estas líneas centrales del seguidor, midiendo siempre hacia afuera desde el círculo primario.
Comentarios
Publicar un comentario