Ir al contenido principal

 

Tipos de Rodamientos

El elemento rotativo que puede emplearse en la fabricación del rodamiento, pueden ser: de bolas, de rodillos o de agujas.

Tipos de Rodamientos

En los rodamientos el movimiento rotativo, según el sentido del esfuerzo que soporta, pueden ser axiales, radiales y axiales-radiales.

Tipos de Rodamientos

Un rodamiento radial es el que soporta esfuerzos radiales, que son esfuerzos de dirección normal a la dirección que pasa por el centro de su eje, como por ejemplo una rueda, es axial si soporta esfuerzos en la dirección de su eje, ejemplo en quicio, y axial-radial si los puede soportar en los dos, de forma alternativa o combinada.

Tipos de Rodamientos

La fabricación de los cojinetes de bolas o rodamientos es la que ocupa en tecnología un lugar muy especial, dados los procedimientos para conseguir la esfericidad perfecta de la bola. Los mayores fabricantes de ese tipo de rodamientos emplean el vacío para tal fin. El material es sometido a un tratamiento abrasivo en cámaras de vacío absoluto. El producto final no es casi perfecto, también es atribuida la gravedad como efecto adverso.

Tipos de rodamientos

Cada clase de tipos de rodamientos muestra propiedades características, que dependen de su diseño y que lo hace más o menos apropiado para una aplicación dada. Por ejemplo, los rodamientos rígidos de bolas pueden soportar cargas radiales moderadas así como cargas axiales pequeñas. Tienen baja fricción y pueden ser producidos con gran precisión. Por lo tanto, son preferidos para motores eléctricos de medio y pequeño tamaño. Los rodamientos de rodillos esféricos pueden soportar cargas radiales muy pesadas y son oscilantes, lo que les permite asumir flexiones del eje, entre dos rodamientos, que soportan un mismo eje. Estas propiedades los hacen muy populares para aplicaciones por ejemplo en ingeniería pesada, donde las cargas son fuertes, así como las deformaciones producidas por las cargas, en máquinas grandes es también habitual cierta desalineación entre apoyos de los rodamientos.

Rodamientos rígidos de bolas

Son usados en una gran variedad de aplicaciones. Son fáciles de diseñar, no separables, capaces de operar en altas e incluso muy altas velocidades y requieren poca atención o mantenimiento en servicio. Estas características, unidas a su ventaja de precio, hacen a estos rodamientos los más populares de todos los rodamientos.

Rodamientos de una hilera de bolas con contacto angular

El rodamiento de una hilera de bolas con contacto angular tiene dispuestos sus caminos de rodadura de forma que la presión ejercida por las bolas es aplicada oblicuamente con respecto al eje. Como consecuencia de esta disposición, el rodamiento es especialmente apropiado para soportar no solamente cargas radiales, sino también grandes cargas axiales, debiendo montarse el mismo en contraposición con otro rodamiento que pueda recibir carga axial en sentido contrario.

Rodamientos de agujas

Son rodamientos con rodillos cilíndricos muy delgados y largos en relación con su menor diámetro. A pesar de su pequeña sección, estos rodamientos tienen una gran capacidad de carga y son eminentemente apropiados para las aplicaciones donde el espacio radial es limitado.

Rodamientos de rodillos cónicos

El rodamiento de rodillos cónicos, debido a la posición oblicua de los rodillos y caminos de rodadura, es especialmente adecuado para resistir cargas radiales y axiales simultáneas. Para casos en que la carga axial es muy importante hay una serie de rodamientos cuyo ángulo es muy abierto. Este rodamiento debe montarse en oposición con otro rodamiento capaz de soportar los esfuerzos axiales en sentido contrario. El rodamiento es desmontable; el aro interior con sus rodillos y el aro exterior se montan cada uno separadamente.

Rodamientos de rodillos cilíndricos de empuje

Son apropiados para aplicaciones que deben soportar pesadas cargas axiales. Además, son insensibles a los choques, son fuertes y requieren poco espacio axial. Son rodamientos de una sola dirección y solamente pueden aceptar cargas axiales en una dirección. Su uso principal es en aplicaciones donde la capacidad de carga de los rodamientos de bolas de empuje es inadecuada. Tienen diversos usos industriales, y su extracción es segura.

Rodamientos axiales de rodillos a rótula

El rodamiento axial de rodillos a rótula tiene una hilera de rodillos situados oblicuamente, los cuales, guiados por una pestaña del aro fijo al eje, giran sobre la superficie esférica del aro apoyado en el soporte. En consecuencia, el rodamiento posee una gran capacidad de carga y es de alineación automática. Debido a la especial ejecución de la superficie de apoyo de los rodillos en la pestaña de guía, los rodillos giran separados de la pestaña por una fina capa de aceite. El rodamiento puede, por lo mismo, girar a una gran velocidad, aun soportando elevada carga. Contrariamente a los otros rodamientos axiales, éste puede resistir también cargas radiales.

Rodamientos de bolas a rótula

Los rodamientos de bolas a rótula tienen dos hileras de bolas que apoyan sobre un camino de rodadura esférico en el aro exterior, permitiendo desalineaciones angulares del eje respecto al soporte. Son utilizados en aplicaciones donde pueden producirse desalineaciones considerables, por ejemplo, por efecto de las dilataciones, de flexiones en el eje o por el modo de construcción. De esta forma, liberan dos grados de libertad correspondientes al giro del aro interior respecto a los dos ejes geométricos perpendiculares al eje del aro exterior.

Este tipo de rodamientos tienen menor fricción que otros tipos de rodamientos, por lo que se calientan menos en las mismas condiciones de carga y velocidad, siendo aptos para mayores velocidades.

Rodamientos de rodillos cilíndricos

Rodamiento de rodillos cilíndricos del tipo NUP. Un rodamiento de rodillos cilíndricos normalmente tiene una hilera de rodillos. Estos rodillos son guiados por pestañas de uno de los aros, mientras que el otro aro puede tener pestañas o no.

Según sea la disposición de las pestañas, hay varios tipos de rodamientos de rodillos cilíndricos:

Tipos de rodamientos NU: con dos pestañas en el aro exterior y sin pestañas en el aro interior. Sólo admiten cargas radiales, son desmontables y permiten desplazamientos axiales relativos del alojamiento y eje en ambos sentidos.

Tipos de rodamientos N: con dos pestañas en el aro interior y sin pestañas en el aro exterior. Sus características similares al anterior tipo.

Tipos de rodamientos NJ: con dos pestañas en el aro exterior y una pestaña en el aro interior. Puede utilizarse para la fijación axial del eje en un sentido.

Tipos de rodamientos NUP: con dos pestañas integrales en el aro exterior y con una pestaña integral y dos pestañas en el aro interior. Una de las pestañas del aro interior no es integral, es decir, es similar a una arandela para permitir el montaje y el desmontaje. Se utilizan para fijar axialmente un eje en ambos sentidos.
Los rodamientos de rodillos son más rígidos que los de bolas y se utilizan para cargas pesadas y ejes de gran diámetro.

Rodamientos de rodillos a rótula

El rodamiento de rodillos a rótula tiene dos hileras de rodillos con camino esférico común en el aro exterior siendo, por lo tanto, de alineación automática. El número y tamaño de sus rodillos le dan una capacidad de carga muy grande. La mayoría de las series puede soportar no solamente fuertes cargas radiales sino también cargas axiales considerables en ambas direcciones. Pueden ser reemplazados por rodamientos de la misma designación que se dará por medio de letras y números según corresponda a la normalización determinada.

Rodamientos axiales de bolas de simple efecto

El rodamiento axial de bolas de simple efecto consta de una hilera de bolas entre dos aros, uno de los cuales, el aro fijo al eje, es de asiento plano, mientras que el otro, el aro apoyado en el soporte, puede tener asiento plano o esférico. En este último caso, el rodamiento se apoya en una contraplaca. Los rodamientos con asiento plano deberían, sin duda, preferirse para la mayoría de las aplicaciones, pero los de asiento esférico son muy útiles en ciertos casos, para compensar pequeñas inexactitudes de fabricación de los soportes. El rodamiento está destinado a resistir solamente carga axial en una dirección.

Rodamientos de aguja de empuje

Pueden soportar pesadas cargas axiales, son insensibles a las cargas de choque y proveen aplicaciones de rodamientos duras requiriendo un mínimo de espacio axial.


https://nosoloherramientas.es/tipos-de-rodamientos/ 

Comentarios

Entradas populares de este blog

¿Cuáles son las Leyes de Newton?

¿Cuáles son las Leyes de Newton Las  leyes de Newton son tres principios que sirven para describir el movimiento de los cuerpos,  basados en un sistema de referencias inerciales (fuerzas reales con velocidad constante). Las tres leyes de Newton son: Primera ley o ley de la inercia. Segunda ley o ley fundamental de la dinámica. Tercera ley o principio de acción y reacción. Estas leyes que relacionan la fuerza, la velocidad y el movimiento de los cuerpos son la base de la mecánica clásica y la física. Fueron postuladas por el físico y matemático inglés Isaac Newton, en 1687. Primera ley de Newton: ley de la inercia La ley de la inercia o primera ley postula que un cuerpo permanecerá en reposo o en movimiento recto con una velocidad constante, a menos que se aplique una fuerza externa. Dicho de otro modo, no es posible que un cuerpo cambie su estado inicial (sea de reposo o movimiento) a menos que intervengan una o varias fuerzas. La fórmula de la primera ley de Newton es : Si la suma de

Factorización de un número

  Factorización de un número Para  factorizar  un  número  o  descomponerlo en factores  efectuamos sucesivas divisiones entre sus divisores primos hasta  obtener  un uno como cociente. Para realizar las divisiones utilizaremos una  barra vertical , a la  derecha escribimos los divisores primos  y a la  izquierda los cocientes . 432 = 2 4  · 3 3 Sacar factor común Sacar factor común a un polinomio consiste en aplicar la propiedad distributiva. a · x + b · x + c · x = x (a + b + c) Una raíz del polinomio será siempre x = 0 x3 + x2 = x2 (x + 1) La raíces son: x = 0 y x = − 1 Doble extracción de factor comúun x 2  − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b) Diferencia de cuadrados Una diferencia de cuadrados es igual a suma por diferencia. a 2  − b 2  = (a + b) · (a − b) x 2  − 4 = (X + 2) · (X − 2) Las raíces son X = − 2 y X = 2 Trinomio cuadrado perfecto Un  trinomio cuadrado perfecto  es el desarrollo de un un  binomio al cuadrado . a 2  + 2 a b + b 2  = (a + b) 2 a 2  −
  La Teoría de Cuerdas En esta sección, conocemos los ingredientes básicos de la teoría de cuerdas, que explica que todos los componentes de la realidad surgen de diminutos filamentos llamados cuerdas, que dependiendo de su estado de vibración, producen cada una de las partículas elementales conocidas en nuestro universo. Las dimensiones adicionales mencionadas anteriormente se pueden explicar utilizando el concepto de compactación, con la ayuda de branas, que anclan los puntos finales de estas cuerdas. La estructura de las branas y la compactación de estas dimensiones adicionales determina la forma en que vibran las cuerdas y, por lo tanto, determina las leyes de nuestro universo. Sin embargo, no existe una forma única de compactar estas dimensiones y el Paisaje de Cuerdas, como se le llama, comprende múltiples posibilidades válidas, lo que lo convierte en un gran defecto de la teoría, ya que no determina específicamente cuál es la posibilidad correcta para nuestro universo. .  En e